首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2344篇
  免费   268篇
  国内免费   135篇
化学   1485篇
晶体学   2篇
力学   61篇
综合类   81篇
数学   881篇
物理学   237篇
  2024年   2篇
  2023年   43篇
  2022年   47篇
  2021年   131篇
  2020年   119篇
  2019年   96篇
  2018年   81篇
  2017年   124篇
  2016年   118篇
  2015年   78篇
  2014年   117篇
  2013年   158篇
  2012年   193篇
  2011年   124篇
  2010年   115篇
  2009年   139篇
  2008年   149篇
  2007年   128篇
  2006年   117篇
  2005年   120篇
  2004年   89篇
  2003年   60篇
  2002年   72篇
  2001年   46篇
  2000年   40篇
  1999年   40篇
  1998年   24篇
  1997年   27篇
  1996年   23篇
  1995年   21篇
  1994年   19篇
  1993年   7篇
  1992年   12篇
  1991年   12篇
  1990年   6篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   9篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有2747条查询结果,搜索用时 31 毫秒
31.
Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)‐derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC‐derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε‐caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber‐mediated orientation of hPSC‐derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

  相似文献   

32.
Capillary electrophoresis-frontal analysis is one of the most frequently used approaches for the study of plasma protein-drug interactions as a substantial part of new drug development. However, the capillary electrophoresis-frontal analysis typically combined with ultraviolet-visible detection suffers from insufficient concentration sensitivity, particularly for substances with limited solubility and low molar absorption coefficient. The sensitivity problem has been solved in this work by its combination with an on-line sample preconcentration. According to the knowledge of the authors this combination has never been used to characterize plasma protein-drug binding. It resulted in a fully automated and versatile methodology for the characterization of binding interactions. Further, the validated method minimalizes the experimental errors due to a reduction in the manipulation of samples. Moreover, employing an on-line preconcentration strategy with capillary electrophoresis-frontal analysis using human serum albumin-salicylic acid as a model system improves the drug concentration sensitivity 17-fold compared to the conventional method. The value of binding constant (1.51 ± 0.63) · 104 L/mol obtained by this new capillary electrophoresis-frontal analysis modification is in agreement with the value (1.13 ± 0.28) ·104 L/mol estimated by a conventional variant of capillary electrophoresis-frontal analysis without the preconcentration step, as well as with literature data obtained using different techniques.  相似文献   
33.
Nowadays, hydrogels-based microneedles (MNs) have attracted a great interest owing to their outstanding qualities for biomedical applications. For the fabrication of hydrogels-based microneedles as tissue engineering scaffolds and drug delivery carriers, various biomaterials have been tested. They are required to feature tunable physiochemical properties, biodegradability, biocompatibility, nonimmunogenicity, high drug loading capacity, and sustained drug release. Among biomaterials, human proteins are the most ideal biomaterials for fabrication of hydrogels-based MNs; however, they are mechanically weak and poorly processible. To the best of the knowledge, there are no reports of xeno-free human protein-based MNs so far. Here, human albumin-based hydrogels and microneedles for tissue engineering and drug delivery by using relatively new processible human serum albumin methacryloyl (HSAMA) are engineered. The resultant HSAMA hydrogels display tunable mechanical properties, biodegradability, and good biocompatibility. Moreover, the xeno-free HSAMA microneedles display a sustained drug release profile and significant mechanical strength to penetrate the model skin. In vitro, they also show good biocompatibility and anticancer efficacy. Sustainable processible human albumin-based biomaterials may be employed as a xeno-free platform in vivo for tissue engineering and drug delivery in clinical trials in the future.  相似文献   
34.
Ethosuximide (ETX) is a common antiepileptic drug in the first line of absence epilepsy. In this study, for the first time, an economical and efficient electro-membrane (EME) method for determination of ETX in a complex biological matrix using HPLC-UV has been developed. Factors affecting conventional EME were evaluated. 1-Octanol was immobilized in a polypropylene membrane and a voltage of 35 V was applied between two platinum electrodes for 15 min. The pH of acceptor and donor phases for ionization of ETX was adjusted to 13 and 11, respectively. Under optimal microextraction conditions, the enrichment factor was 21.02 and the linear range of ETX was 0.25 to 8.00 μg/mL with an acceptable R2 ≥ 0.9986. Inter-day and intra-day precision and accuracy of the suggested method were calculated with RSD < 9.5% and relative error <7.0%, respectively. The mean relative recovery of ETX in the human saliva and plasma samples was 81.68% and 74.47, respectively; while limit of detection and quantification concentrations were 0.08 and 0.25 μg/mL, respectively. Furthermore, to evaluate the application of the method, plasma and saliva samples of volunteers administering a single dose of ETX were analyzed successfully by EME-HPLC-UV method.  相似文献   
35.
A method development aimed for high-throughput and automated antibody screening holds great potential for areas ranging from fundamental molecular interactions to the discovery of novel disease markers, therapeutic targets, and monoclonal antibody engineering. Surface display techniques enable efficient manipulation of large molecular libraries in small volumes. Specifically, phage display appeared as a powerful technology for selecting peptides and proteins with enhanced, target-specific binding affinities. Here, we present a phage-selection microfluidic device wherein electrophoresis was performed under two orthogonal electric fields through an agarose gel functionalized with the respective antigen. This microdevice was capable of screening and sorting in a single round high-affinity phage-displayed antibodies against virus glycoproteins, including human immunodeficiency virus-1 glycoprotein 120 or the Ebola virus glycoprotein (EBOV-GP). Phages were differentially and laterally swept depending on their antigen affinity; the high-affinity phages were recovered at channels proximal to the application site, whereas low-affinity phages migrated distal after electrophoresis. These experiments proved that the microfluidic device specifically designed for phage-selection is rapid, sensitive, and effective. Therefore, this is an efficient and cost-effective method that allowed highly controlled assay conditions for isolating and sorting high-affinity ligands displayed in phages.  相似文献   
36.
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.  相似文献   
37.
38.
39.
Melanoma is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Therefore, new therapeutic agents are needed for the management of this disease. The aim of this study was the investigation of cytotoxic activity of some isoquinoline alkaloid standards and extracts obtained from Sanguinaria canadensis—collected before, during, and after flowering—against three different human melanoma cells (A375, G361, SK-MEL-3). The cytotoxicity of these extracts was not previously tested on these melanoma cell lines. Determination of alkaloid contents was performed by HPLC-DAD using Polar RP column and mobile phase containing acetonitrile, water, and 1-butyl-3-methylimidazolium tetrafluoroborate. The cytotoxicity of alkaloid standards was investigated by determination of cell viability and calculation of IC50 values. Significant differences were observed in the alkaloids content and cytotoxic activity of the extracts, depending on the season of collection of the plant material. In the Sanguinaria canadensis extracts high contents of sanguinarine (from 4.8543 to 9.5899 mg/g of dry plant material) and chelerythrine (from 42.7224 to 6.8722 mg/g of dry plant material) were found. For both of these alkaloids, very high cytotoxic activity against the tested cell lines were observed. The IC50 values were in the range of 0.11–0.54 µg/mL for sanguinarine and 0.14 to 0.46 µg/mL for chelerythrine. IC50 values obtained for Sanguinaria canadensis extracts against all tested cell lines were also very low (from 0.88 to 10.96 µg/mL). Cytotoxic activity of alkaloid standards and Sanguinaria canadensis extracts were compared with the cytotoxicity of anticancer drugs—etoposide, cisplatin, and hydroxyurea. In all cases except the one obtained for cisplatin against A375, which was similar to that obtained for Sanguinaria canadensis after flowering against the same cell line, IC50 values obtained for anticancer drugs were higher than the IC50 values obtained for sanguinarine, chelerythrine, and Sanguinaria canadensis extracts. Our results showed that Sanguinaria canadensis extracts and isoquinoline alkaloids, especially sanguinarine and chelerythrine, could be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of human melanomas.  相似文献   
40.
Several studies have been published regarding the effect of different factors on the digestion of milk lipids, considering their natural structural arrangement as milk fat globules and the efficiency of the digestive enzymes in the lipolysis of such complex structures. During digestion, the lipolytic products are dispersed in vesicles and micelles, which are the source for absorption of digested lipids. Therefore, it is necessary to consider the isolation of the micellar phase from the digesta to appropriately determine the amounts and classes of lipids which are bioaccessible. This study presents an integrative approach that included an isolation procedure to separate the micellar fraction from undigested and non-micellar parts, and the distribution of digested milk lipids in micelles determined directly through chromatographic techniques. Four groups of five full term mothers donated colostrum or mature milk. Two sets of samples were analyzed directly (raw), and two sets were pasteurized and then analyzed. Our data revealed that the profile of digested milk lipids is different depending on the lactation period and processing stage, while the carbon atom number distribution of the digested triacylglycerols in the micellar fraction provides a substantial information regarding the acylglycerols species that are less available for absorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号